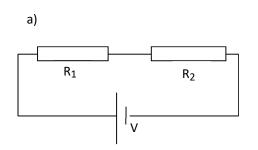
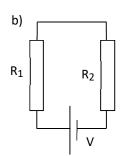
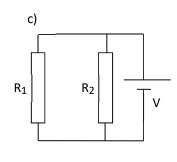
FISICA II

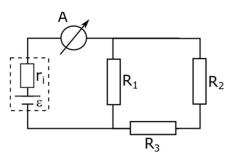

Coloquio N° 3:


Corriente Continua: Ley de Ohm, potencia, energía. Leyes de Kirchhoff.


Problemas a resolver en el coloquio:

Problema 1

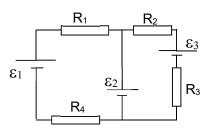
Determine la resistencia equivalente en cada caso, y calcule la corriente y la diferencia de potencial en cada una de las resistencias. Los datos son: $R_1 = 100\Omega$, $R_2 = 400\Omega$, V = 12V



Problema 2

En el circuito de la figura, la batería tiene una fem de 11 V y su resistencia interna es r_i = 20 Ω . Si R_1 = 400 Ω , R_2 = 100 Ω y R_3 = 300 Ω , calcule:

- a) La lectura del amperímetro.
- b) La diferencia de potencial entre los bornes de la batería.
- c) La potencia disipada en la resistencia R₁.
- d) Si ahora colocamos entre R₂ y R₃ un fusible, tal que soporta una corriente máxima de 20 mA ¿qué sucederá? ¿Cuál será la nueva lectura del amperímetro?



Problema 3

En el circuito de la figura:

- a) Encuentre la corriente que circula por cada rama del circuito.
- b) Determine para cada batería si trabaja como generador o receptor.
- c) Calcule la potencia disipada en R_4 y la energía que consumirá si el circuito se mantiene funcionando 20 h.

 R_1 = R_2 =20 Ω , R_3 = R_4 = 100 Ω , \mathbb{P}_1 = 200V, \mathbb{P}_2 = 100V, \mathbb{P}_3 = 150 V.

Problema 4

Una batería cuya fem es de 12 V tiene una resistencia interna de 2 Ω . Se la conecta a una lámpara cuya resistencia es de 5 Ω . Calcule:

- a) La corriente que circula en el circuito y la ddp en los bornes de la batería;
- b) La potencia que genera la fem y la potencia que disipa la lámpara.
- c) ¿A qué se debe que estas potencias no sean iguales? ¿Cómo puede expresarse la potencia efectivamente entregada por la batería?
- d) Calcule la energía disipada por la lámpara cuando está encendida durante 24 hs.

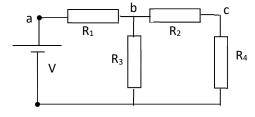
Problemas adicionales

Problema 1

A una fuente de tensión de 20 V y resistencia interna despreciable se le conectan en paralelo las resistencias R_1 = 100 Ω , R_2 = 300 Ω , R_3 = 250 Ω .

- a) Determine la potencia disipada en cada una de las resistencias y la potencia total disipada.
- b) Si se desconecta R₃, ¿cambia la potencia disipada por las restantes resistencias? ¿Por qué? ¿Cambia la potencia total disipada?
- c) Si las 3 resistencias se conectan en serie con la fuente, determine nuevamente la potencia disipada por cada una.

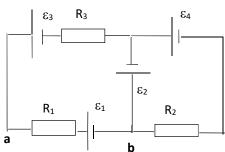
Problema 2


Una resistencia R_1 disipa 60 W cuando se le aplican 200 V. Otra resistencia R_2 disipa 40 W a la misma tensión. Calcule:

- a) Los valores de R₁ y R₂
- b) La potencia disipada por R₁ y R₂ cuando se conectan en serie a un generador de 100 V
- c) ¿cuánta energía consumen estas resistencias si están conectadas durante 10 horas? Repita b) y c) para conexión en paralelo.

Problema 3

Determine mediante pasos sucesivos la resistencia equivalente de este circuito, siendo R_1 =100 Ω , R_2 =300 Ω , R_3 =250 Ω , R_4 =400 Ω . En cada paso dibuje cómo va quedando el circuito. Si la batería es de 15 V, calcule:


- a) La corriente que circula por cada una de las resistencias, dibujando su sentido.
- b) La ddp entre los puntos a y b, y entre los puntos a y c, indicando en cada caso cuál es el punto de mayor potencial;
- c) La potencia disipada por R_3 , y la energía que consumirá R_3 si el circuito queda conectado durante 10h.

Problema 4

En el circuito de la figura todas las baterías son de 12 V y tienen resistencia interna despreciable. R_1 =40 Ω , R_2 = 10 Ω , R_3 = 20 Ω

- a) Calcule las corrientes en cada rama.
- b) Calcule la potencia disipada en cada resistencia.
- c) Determine, para cada batería, si funciona como generador o receptor. Justifique sus respuestas.
- d) Calcule la potencia generada por las fem generadoras y la absorbida por las receptoras.
- e) Realice un balance de potencia en el circuito. Potencia generada por las fem generadoras = Potencia absorbida por las receptoras + potencia disipada por las resistencias.
- f) Calcule la diferencia de potencial entre los puntos a y b del circuito.
- g) Si se colocan un fusible de 0.5 A y un amperímetro, ambos en serie entre R_2 y ϵ_4 ¿cuál será la lectura de este amperímetro?

